
A New Smoothing Method for Lexicon-based
Handwritten Text Keyword Spotting

Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal

Pattern Recognition and Human Language Technology Research Center
Universitat Politècnica de València

Camı́ de Vera s/n, 46022 València, Spain
{joapuipe,ahector,evidal}@prhlt.upv.es

Abstract. Lexicon-based handwritten text keyword spotting (KWS)
has proven to be a very fast and accurate alternative to lexicon-free
methods. Nevertheless, since lexicon-based KWS methods rely on a pre-
defined vocabulary, fixed in the training phase, they perform poorly for
any query keyword that was not included in it (i.e. out-of-vocabulary
keywords). This turns the KWS system useless for that particular type
of queries. In this paper, we present a new way of smoothing the scores
of OOV keywords, and we compare it with previously published alterna-
tives on di↵erent data sets.

Keywords: keyword spotting, lexicon-based, word-graph, smoothing,
handwritten text recognition

1 Introduction

The aim of handwritten text keyword spotting (KWS) is to determine, given
a predefined confidence level, in which documents or image regions, a given
keyword is present. This work, focuses on the case where queries are presented
to the system as strings typed by the user (known as Query-by-String) [8].

In the recent past, word-graphs (WG) have been proposed for KWS in hand-
written text images [11]. This approach takes the statistical morphological, lex-
ical and language models, previously trained for a handwriting text recognition
task, and uses an extension of Viterbi algorithm to generate a word-graph for
each text-line, containing a set of possible transcriptions of that particular line
and its likelihood. From these WG, line-level confidence scores are computed
for each keyword and indexed line, to allow for a fast lookup, with a confidence
threshold given by the user.

This method provides much faster searches than traditional lexicon-agnostic
methods, such as the HMM-filler method [1], or KWS methods based on bi-
directional recurrent neural networks (BLSTM) [2]. Moreover, the Precision–
Recall performance provided by the lexicon-based method gives better results
than the traditional HMM-filler and comparable with that based on BLSTM.

Unfortunately, an important problem of lexicon-based methods is how to
deal with out-of-vocabulary (OOV) queries: since this methods rely on a fixed

II

vocabulary, determined during the training phase of the system, they will give a
null score for any keyword not included in this training lexicon. In order to cope
with this problem, this paper presents a new technique for smoothing the scores
given by a lexicon-based system, and we compare it with previous publications.

We will show that our proposal improves the ones presented in [6]. In both
cases, a similarity metric between an OOV keyword and the indexed ones is used
to approximate the score of the OOV events. We also compare our method with
[5], which is a combination of lexicon-based and HMM-filler systems, which gives
excellent performance results. However the use of the HMM-filler significantly
dampers the speed of the system, even when fast search approaches are used
[10], as we show in the experiments.

The paper is organized as follows: section 2 introduces basic concepts of
the KWS framework used in this work, section 3 briefly describes the exist-
ing smoothing methods and presents the proposed method in detail, section 4
presents the experiments conducted to evaluate this work and compare it to
previously published works, and final conclusions are drawn in section 5.

2 Keyword Spotting Framework Review

The KWS method used in this work was originally presented in [11]. For each
query keyword v and each text line, represented by x, the system tries to model
a score S(x, v) which measures how likely is the event “keyword v is written in
x”, or re-phrased as “text line x is relevant for keyword v”. Following [11], we
define the score as:

S(x, v)
def
= max

1in
P (v | x, i) (1)

P (v | x, i) is known as the frame-level word posterior, which is the probability
that the word v is present in the line image x at position i. As shown in [11], this
posterior can be directly approximated from the WG of the line image obtained
as a byproduct of recognizing the image with a HTR system based on optical
models such as HMMs and n-gram language models.

Observe that the previous score is equivalent to the probability of a Bernoulli
distribution over a random variable R, measuring how likely is the event “text
line x is relevant for keyword v”.

P (R | x, v) def
=

(
S(x, v) R = 1

1� S(x, v) R = 0
(2)

3 Out-of-Vocabulary Queries

In the introduction we briefly explained one drawback of the lexicon-based KWS
method, related to the out-of-vocabulary keywords. Since this KWS approach
uses a n-gram LM which assigns a null probability to any keyword not seen

III

during its training, the frame-level word posterior P (u | x, i) = 0, for all keyword
u /2 V , on any line image x.

In this section, we will briefly explain some of the solutions that have re-
cently been introduced in the literature to mitigate this problem, along with our
contribution.

3.1 Line-level Smoothing with Levenshtein Distance

In [6], a first attempt to solve this problem is presented. Here the score of an
OOV keyword u is smoothed using the scores of the indexed keywords v 2 V
and the Levenshtein distance d(u, v) between both strings, using:

S(x, u)
def
=max

v2V
S(x, v)1�↵ · e�↵d(u,v) (3)

The parameter ↵ is tuned using a validation set and is intended to balance
the contribution of the Levenshtein distance on the score of the OOV event.

3.2 Frame-level Word Posterior Smoothing

In the previous work [6], a frame-level smoothing is also presented. This method,
first smooths the frame-level word posterior P (u | x, i) of a keyword u /2 V ,
following:

P̃ (u | x, i) =
P

v2V P (v | x, i) · f(u, v)↵

1 +
P

v2V P (v | x, i) · f(u, v)↵ (4)

The parameter ↵ is tuned again using a validation partition and the function
f(u, v) is a similarity measure based, on a stochastic error correcting approach,
indicating how similar are the keywords u /2 V and v 2 V . Finally, the score
S(x, u) is computed as in Eq.1, but using P̃ (u | x, i) instead.

3.3 Lexicon-based and HMM-Filler combination

This approach, presented in [5], is actually a combination of two di↵erent sys-
tems, each of them with di↵erent strengths and issues. When a query keyword
v is indexed (i.e. not an OOV), it can be immediately honored using the pre-
computed scores given by the lexicon-based approach. Otherwise, a lexicon-free
HMM-filler model is used to serve the query. The resulting score is obtained
using:

S(x, v) =

(
SG(x, v) v 2 V

exp(SF (x, v))⌘ v /2 V
(5)

Here, SG(x, v) are the scores given by the lexicon-based system and SF (x, v)
are the scores given by the HMM-filler. The exponentiation of the HMM-filler
scores and the parameter ⌘ are required because this model does not give prop-
erly normalized scores, which have to be be scaled to an appropriate range.

IV

3.4 New Proposed Line-level Smoothing

The proposed line-level score smoothing is based on the probabilistic interpre-
tation of the scores obtained from the lexicon-based KWS approach. As we
mentioned before, the score S(x, v), given by this approach, can be interpreted
as P (R | x, v). Then, we can marginalize this distribution for a particular u /2 V ,
with all v 2 V , resulting in:

P (R | x, u) =
X

v2V

P (R, v | x, u) =
X

v2V

P (R | x, u, v) · P (v | x, u) (6)

Then, we make two independence assumptions: First, assume that v is condi-
tionally independent of x, given u, i.e. P (v | x, u) ⇡ P (v | u). Then, we assume
that P (R | x, u, v) ⇡ P (R | x, v), which implies that the fact that a line x is
relevant for a pair of keywords u /2 V and v 2 V , actually depends only on the
keyword v 2 V . After these assumptions, Eq.6 is approximated as:

P (R | x, u) ⇡
X

v2V

P (R | x, v) · P (v | u) (7)

P (v | u) is a similarity probability distribution which has to normalized
across all v 2 V , which di↵ers from the one introduced in [6], which had to
be normalized across all u 2 ⌃⇤. Since the distribution is over a finite set of
elements, it can be defined in arbitrary ways that do not exhibit the problems
of [6] (it was a↵ected by the length of the keywords and had estimation issues).
Particularly, we choose a distribution based on the Levenshtein distance d(u, v):

P (v | u) def
=

exp(�↵ d(u, v))P
v02V exp(�↵ d(u, v0))

(8)

In the same way that the previous smoothing methods did, we introduce an
parameter ↵ to tune the contribution of the similarity measure.

4 Experiments

In order to compare the proposed method with previous works, several exper-
iments were conducted on di↵erent corpora. Performance assessment, corpora,
experimental setup and results are explained below.

4.1 Performance assessment

Assessment is measured using the average precision (AP) metric [7], based on
the recall and precision measures. As is usually done, we use the interpolated
precision in order to smooth plain precision [4]. AP is a scalar summary of the
precision and recall, which are functions of a threshold used to determine whether
the score S(x, v) is high enough to assume that v is relevant in x. Additionally,

V

we report the mean average precision (mAP), which is also widely adopted in
the literature. It is computed by averaging the AP of each keyword. We decided
to optimize our parameters based on the AP metric.

Finally, we also compared the number of seconds required to compute the
scores of an OOV query, in each corpus. We only considered the OOV keywords
for this comparison, since the scores of in-vocabulary keywords can be precom-
puted and the lookup speed becomes asymptotically constant.

4.2 Corpora

The “Cristo-Salvador” (CS) dataset is a small XIX century single-writer Spanish
manuscript. We used exactly the same partitioning as [10, 6]. Since the CS corpus
is quite small, we ignored capitalization and diacritics to build the lexicon and
the LM, and performed cross-validation to tune all parameters.

Regarding IAM, it consists of English handwritten texts from many writers.
We used the same data partitions used in previous KWS experiments [1, 2, 10,
5]. In addition to the text in the line images, we used three external text corpora
(LOB, Brown and Wellington), which were used to build a 20K-word lexicon
and train a LM (test lines were excluded from LOB).

In both cases, we used the lexicon of the test lines as the query set. In the
case of IAM, we subtracted from the query set all stop words, as in [5]. Tab.1
summarizes the most important information of the corpora.

Table 1: Tables summarizing the corpora used for experimentation.

(a) Basic statistics of the selected databases.

CS IAM
Train Test Train Valid. Test

Running Chars 35 863 26 353 269 270 39 318 39 130
Running Words 6 223 4 637 47 615 7 291 7 197
Lines 675 497 6 161 920 929
Char Lex. Size 78 78 72 69 65
Word Lex. Size 2 236 1 671 7 778 2 442 2 488
OOV Lex. Size — 1 051 — 435 437

(b) Details of the selected query sets for the test partition in
each dataset.

CS IAM

Line images: N 497 929
Query words: M 1 671 2 209
Line-query events: M ·N 830 487 2 052 161
OOV Line-query events 522 347 405 973
Relevant line-query events 4,346 3 446
Relevant OOV line-query events 1,341 496

VI

4.3 Experimental setup

In each corpus, we trained a a left-to-right HMM model with GMM distribu-
tions on the states, for each character included in the training set. The standard
embedded Baum-Welch training algorithm was used [12]. Details about prepro-
cessing, feature extraction, number of states and mixtures in the GMM, etc. can
be found in [11] for the CS dataset, and [1] for IAM.

A bi-gram LM was used to build the lexicon-based system. In the case of CS,
the transcripts of the training set were used, converting lowercase characters
to uppercase. For IAM, the LM was trained using the external LBW corpus,
restricted to the 20K most frequent words. Finally, the standard Kneser-Ney
back-o↵ was used to smooth the probabilities of unseen bi-grams [3].

The approach described in [11] was used, in order to speedup the search using
the HMM-filler. In a preparatory phase, character-lattices (CL) are obtained
using the “filler”, for each of the test lines. The maximum node input degree
(NID) of these was set to 30. Then, during the search phase, the scores of each
query are computed using the CL. For the lexicon-based method, WG were
generated using the standard HTK software, with the described language models,
with a maximum NID value equal to 40, and not using any pruning technique
during the decoding. Further details about the lexicon-based method can be
found in [6, 5].

Concerning the tuning of parameters, we used the same values as the reference
papers [6, 5], for the existing methods. As for our method (section 3.4), we used
the IAM validation set and performed cross-validation on CS. We finally set ↵
to 4, for both corpora.

Experiments were conducted on a Intel Core 2 Quad Q9550 CPU at 2.83GHz,
running Ubuntu Linux 14.04. All custom software was implemented in C++.

4.4 Results

Table 2 summarizes the main results obtained on the test set of each corpora.

Table 2: Line-level Average Precision (AP) and Mean Average Precision (mAP)
provided by each smoothing method on the test set of the corpora. Results
tagged with † and ‡ were presented in [6, 5], respectively. Query time (Qtime) is
the average time required to serve the OOV queries, expressed seconds.

CS IAM

Method AP mAP Qtime AP mAP Qtime

No smoothing 55.6 29.0 — 69.1 68.8 —

Line Max. (sec. 3.1) † 57.8 † 45.0 0.44 69.8 76.0 8.78

Posteriorgram (sec. 3.2) † 58.8 † 46.7 27.21 70.2 76.1 42.48

WG + HMM-Filler (sec. 3.3) 72.5 76.6 177.10 ‡ 76.9 ‡ 82.2 58.16

This work (sec. 3.4) 59.5 46.0 0.52 71.3 76.0 9.96

VII

Compared to the method described in 3.1, for both datasets, our proposal
improves the previous AP results (about 1.7 points of absolute improvement),
while maintaining similar computational costs. This is because the asymptotic
running time of both algorithms is the same and the new method successfully
uses more information from the index: the contribution of all in-vocabulary key-
words is considered, instead of a maximum.

Moreover, the proposed work slightly improves the AP of the method de-
scribed in 3.2 (about 0.9 points of absolute improvement), and is able to obtain
the smoothed scores in much faster times (about 50 times faster in CS and 4
times faster in IAM). It is important to notice that the running time of method
3.2 depends both on the size of V , and the average number of edges per node
in the line WG, which can be interpreted as the perplexity of the WG. In the
CS case, the perplexity of the WG is much higher than in the IAM case (35.8
vs 23.6), since fewer training data was available for both the HMM and LM.
However, the size of the vocabulary is much higher for IAM. On the other hand,
the perplexity of the WG does not a↵ect the speed of our method, which works
directly with the index scores. The interaction between these two factors explains
why method 3.2 is slower in IAM than in CS, but is faster in IAM than in CS
when it is relatively compared to our proposal.

It is worth pointing out that the computation of the Levenshtein distances
has been done naively in this work, with an asymptotic cost of O(|q| · L · |V |),
where q is the query string, L = maxv2V |v|, and |s| gives the length of string
s. Nevertheless, this computation can enormously reduced by using tries for
indexing the vocabulary, or limiting the maximum number of errors allowed [9].

Finally, we show that the combination of the Lexicon-based and the HMM-
filler methods gives better AP results than any of the proposed methods, but at
a much higher computational cost: our method is 340 times faster in CS and 6
times faster in IAM, when compared to 3.3. The reason explaining the di↵erences
in the speedup is the same as explained above.

5 Conclusions

We presented a new method for smoothing the scores given by the lexicon-based
system, based on the similarity between the OOV keyword and the indexed
vocabulary. Futhermore, we performed a detailed comparison of di↵erent alter-
natives that try to alleviate the problem caused by OOV queries when using a
lexicon-based KWS system for handwritten text images.

The presented smoothing method gives better results than most of the com-
pared alternatives, and it is comparable in speed to the fastest of the previous
methods, also based on similarity measures.

Only the combination of a lexicon-based system and a HMM-filler surpasses
our proposal, among the studied methods. Nevertheless, it comes with a time
cost several orders of magnitude bigger than our proposal, specially when the
CL are big or have a high average number of edges per node, which may result
impractical in some real scenarios (i.e. Cristo-Salvador corpus).

VIII

In the future, we are planning to investigate ways of e↵ectively indexing
open-lexicon systems and combine them with lexicon-based approaches, thus
allowing for faster and more accurate searches for both in-vocabulary and out-
of-vocabulary queries.

Acknowledgments

This work was partially supported by the Spanish MEC under FPU grant
FPU13/06281 and under the STraDA research project (TIN2012-37475-C02-01),
by the Generalitat Valenciana under the grant Prometeo/2009/014, and through
the EU 7th Framework Programme grant tranScriptorium (Ref:600707).

References

1. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Recognition Letters 33(7), 934 – 942
(2012), special Issue on Awards from ICPR 2010

2. Frinken, V., Fischer, A., Manmatha, R., Bunke, H.: A Novel Word Spotting Method
Based on Recurrent Neural Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34(2), 211 –224 (Feb 2012)

3. Kneser, R., Ney, H.: Improved backing-o↵ for N-gram language modeling. In: In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP ’95).
vol. 1, pp. 181–184. IEEE Computer Society, Los Alamitos, CA, USA (1995)

4. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2008)

5. Puigcerver, J., Toselli, A.H., Vidal, E.: Word-Graph and Character-Lattice Com-
bination for KWS in Handwritten Documents. In: 14th International Conference
on Frontiers in Handwriting Recognition (ICFHR). pp. 181–186 (2014)

6. Puigcerver, J., Toselli, A.H., Vidal, E.: Word-Graph-based Handwriting Keyword
Spotting of Out-of-Vocabulary Queries. In: 22nd International Conference on Pat-
tern Recognition (ICPR). pp. 2035–2040 (2014)

7. Robertson, S.: A new interpretation of average precision. In: Proc. of the Intl. ACM
SIGIR conference on Research and Development in Information Retrieval (SIGIR
’08). pp. 689–690. ACM, New York, NY, USA (2008)

8. Rodriguez-Serrano, J.A., Perronnin, F.: Handwritten word-spotting using hidden
markov models and universal vocabularies. Pattern Recognition 42(9), 2106–2116
(2009), http://www.sciencedirect.com/science/article/pii/S0031320309000673

9. Shang, H., Merrettal, T.: Tries for approximate string matching. Knowledge and
Data Engineering, IEEE Transactions on 8(4), 540–547 (1996)

10. Toselli, A.H., Vidal, E.: Fast HMM-Filler approach for Key Word Spotting in
Handwritten Documents. In: Proceedings of the 12th International Conference on
Document Analysis and Recognition (ICDAR). pp. 501–505 (2013)

11. Toselli, A.H., Vidal, E., Romero, V., Frinken, V.: Word-Graph Based Keyword
Spotting and Indexing of Handwritten Document Images. Tech. rep., Universitat
Politcnica de Valncia (2013)

12. Woodland, P., Leggetter, C., Odell, J., Valtchev, V., Young, S.: The 1994 HTK
large vocabulary speech recognition system. In: Intl. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP ’95). vol. 1, pp. 73 –76 vol.1 (may 1995)

